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Groups of canonical transformations
and the virial-Noether theorem
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Abstract. In Hamiltonian mechanics a characterization of the infinitesimal genera-
tor of one-parameter Lie Groups of non-univalent canonical transformations is
given. The result is used to derive a general form of the virial theorem, which has
Noether’s theorem as a special case. The theory is applied to the Toda lattice
system.

1. INTRODUCTION

A basic strategy in dealing with classical mechanics is looking for integrals of
the motion. This theory started with the notion of cyclic coordinates and culmi-
nated in Noether’s fundamental theorem [1], which associates to each one-
-parameter group of symmetry transformations of the Hamiltonian an integral
of the motion.

Another result in classical mechanics relevant for physical applications is the
virial theorem. In textbooks this theorem appearsasaresult independent from
the theory of constants of the motion. However in [2] van Kampen gave a deriva-
tion of the virial theorem based on the idea that it is a consequence of the form
invariance of the equations of motion under a continuous transformation. It is
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well-known that form invariance of the equations of motion does not imply
necessarily a symmetry transformation of the system.

In this paper we work out this idea for Hamiltonian mechanics on symplectic
manifolds. In section II we study one-parameter Lie groups ot transtormations
leaving the symplectic structure form invariant, but not strictly invariant, i.e.
the canonical two-form is transformed into a multiple of itself. It can be shown
that this property is equivalent to form invariance of the equations of motion
[3]. In particular we give a complete characterization of the infinitesimal gene-
rator of such one-parameter groups and prove that it is given by a linear combina-
tion of a Hamiltonian vector field and the infinitesimal generator of the dilations.
The usual proof of the virial theorem is based on the study of the time evolution
of the infinitesimal generator of the dilations. Therefore our one-parameter
groups of canonical transformations are genuinely connected to the virial theorem.
In section III we use our results to derive a very general form of the virial theorem,
which has Noether’s theorem as a special case.

Finally, we conclude by a detailed application of the virial theorem to the
Toda lattice system. Contrary to the familiar applications of this theorem where
only scale transformations are used, in this model we go beyond them and employ
a combined scale-translation transformation group, illustrating the power of the
method.

II. ONE-PARAMETER GROUPS OF NON-UNIVALENT CANONICAL
TRANSFORMATIONS

Let I" be the classical phase space which as usual is an even dimensional analytic
manifold. We consider I' to be equipped with a symplectic structure given by a
closed nondegenerate analytic 2-form w?, ie. w? satisfies: dw?=0 and for
any £ € TT,, the tangent space at the point x of P:w?(f,n) =0 foralln e TT,
implies £ = 0. Therefore the phase space I' is a symplectic analytic manifold.

Furthermore, we suppose that there exists an analytic 1-form w! such that
w?=dwl, or a vectorfield X, for which d iy, w?=w? iy, w? is the inner pro-
duct of X | and w?.

As an example take I' = IR? with the chart (g, p), then a natural symplectic
structure is given by the 2-form w?=dq A dp and the corresponding !-form
by w!=—pdg,orX, =—pd/ap.

Next we introduce the notion of canonical transformation.

Consider g an analytic one-to-one mapping of the phase space I' into itself.
This mapping defines a linear map of the tangent spaces which, in turn, introduces
the map g* of the analytic k-forms.
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DEFINITIONIL1. A mapping g, as described above, such that there exists a non
zero constant ¢ € IR, satisfying

(1) g*wi=cw?

is called a canonical transformation of valence c. L

Denote by K the set of canonical transformations. It is clear that Kis a group
for the composition law of successive application of the transformations.
Remark that the set K, of canonical transformations for which ¢ =1 in (1)
is a non trivial subgroup of K; K, is called the group of univalent canonical trans-
formations, leaving the 2-form w2 invariant. Most authors [4 - 7] restrict them-
selves to this set of univalent canonical transtormations.

For what follows it is important to notice that we study the extended group
K of canonical transformations [8]. As is clear from the definition they do not
leave, in the strict sense of the word, the 2-form w? invariant, but it can be
shown that the elements of K do preserve the structure of the Hamilton canonical
equations of motion [3].

Next we introduce a 1-parameter Lie group G, a subgroup of the group K
of canonical transformations. Denote by A € IR the canonical chart of the Lie
group G, i.e. foreach A,, A, € R there exists g\, g(>\2) € G such that

gD g0) =g, +2)

Denote by ¢(\) the valence of the canonical transformation g(\) element of G,
then the function ¢ :A€ R - c(A\) € R is analytic and from (1) it follows that

c(A\) c()\z) =c(A + )\2).
Hence, there exists a constant ¢ € IR such that
(2) c(\) = exp al.

The case @ = 0 reducesto G C Ky-
Denote by A(I') the set of analytic functions on the phase space I', then
the Lie algebra of G is generated by the vectorfield X defined by

df(g(M)x)
3 XNx) = ——

A=0

The components of X are then X = Xx'.

THEOREMIL.2. Let G = {g()‘)}xem be a I-parameter Lie group of canonical
transformations of the symplectic analytic manifold T, equipped with the 2-



318 B. NACHTERGAELE, A. VERBEURE

-form w? Let X, be a vectorfield such that wi=d iy w? then there exists
1
locally a function ¢ € A (') such thar with X the vector field of G one has:

@) d¢=iyw?—aiy w2

where the constant a is defined in (2).

Proof. Using definition 11.1, formula (2) and w? = d i, w?
1

d(g* M w?) AN iy, w?)
aw- == ——— _—_d __—l
dA A=0 da A=0
Applying Thm 2.4.13 of [5] for iy w?Z:
1
d%"!?\?iEE wz) , ,
=i,di, w:+di, i, w
( dN o x5 'x, XX,
hence
; 27wy =
d(‘”xl‘" Iyw )=0
yielding the result. ]

By means of this theorem the generator X of the Lie group G is expressed in
terms of the function ¢. Due to the non-degeneracy of w? formula (4) defines
X uniquely. The vectorfield X depends only on w?. Formula (4) can be viewed
as the defining relation of ¢. The latter one depends on the vector fields X and
X,
Now we are interested in the inverse question, namely whether each vector-
field X defined by equation (4) generates a 1-parameter Lie group of canonical
transformations. The answer is in the following theorem, which we formulate
in the case ¢ is globally given. If ¢ is only 10cally given one gets only a local

group.

THEOREM 11.3. Suppose ¢ € A(I') be given, where T is again the symplectic

manifold with the 2-form w? and the vector field X such that d iX1w2 =w?

then the vectorfield X defined by equation (4), generates a 1-parameter Lie
group G = {g()\)})\e‘R of canonical transformations with the group of valences

{c(\) =expa A}

AER’

Proof. Define the map g(A\) of T by:
gA):xeTT-»g(\)xeTl
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such that for fixed x€ T ,A— g(\) x is the unique solution with initial values
x = g(0) x, of the first order differential equations

3gM)x)’ )
— =X(gM)x); (i=1,...,2n).

It is wellknown (see e.g. [9, Theorems 6.2.1 and 3.5.2)) that G ={g(M\)}, g
is a 1-parameter Lie group and A is a canonical chart: g(A)) g(A,) =g(A| + \));
Ay >\2€ IR. Next we check that for each A€ IR, g(A) is a canonical transfor-
mation. Using Thm 2.4.13 of [5] and the fact that w? is closed

d
"y g Mw?=g"M\iydw? +d(iyw)) =g*" ) diyw?).
Using formula (4):

0=d¢=d(iyw?) —aw?

Hence
d
— ' Mwl=agMw?
dx
and therefore, as g*(0) is the identity map:

g Mw?=emw?

proving (1). This concludes the proof of the Theorem. [ ]

It is instructive to specialize to the case that I' has a local chart (q!, ...,
g" pl,...,p™ and locally

(5) w2=qufAdp"
i

one can choose for X, the following vectorfield:

1 ] .0

(6) X, =— (qi - —p' —
b ,Z oq’ ap'

then one has the solution of (4)
X=[.,¢l+aX,

where the bracket
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mapping A (I') x A(I") in A (I'), is the usual Poisson bracket.

In the case of univalent canonical transformations (¢ = 0) this formula reduces
to the wellknown statement that the generator of 1-parameter groups of canoni-
cal transformations is given by the Poisson bracket with a function, in other
words the generators are Hamiltonian vector fields. Here we see that for general
1-parameter groups of canonical transformations the generator is given by the
sum of a Hamiltonian vectorfield and a vectorfield Xl, which is a generator of
dilations.

HI. THE VIRIAL-NOETHER THEOREM AND APPLICATIONS

Let us first introduce a Hamiltonian system with Hamiltonan H: (g, p) €T >
H(q, p) € R such that H € A(T).
The canonical equations of motion are then

%) f=1fHl, feA@

with solution £, (g4 Py); q,=q(1y), p0=p(t0)'initial values. The preceeding
characterization of the generators of 1-parameter Lie groups of canonical trans-
formations is now used to derive a generalization of Noether’s theorem. Here
we consider 1-parameter groups of transformations which do not leave neces-
sarily the Hamiltonian invariant, as they do in Noether’s theorem, but which
transform it in a trivial way in the sense that they multiply it by a constant.
The result we get is the virial theorem, yielding as a special case Noether’s theo-
rem.

Let G ={g(A)},cr be a one-parameter Lie group of canonical transforma-
tions of the symplectic manifold T, equipped with w? and X, as above. Then
there exists a function ¢ € A (I") such that

d(g*(\NH)

8 H ¢)+aX H=
(8 (H, ¢] +aX, m

A=0

In particular, if g*(A\) H = (exp b)) H, with » € R then
©) (H,¢] +a X, H=bH.

Remark that one recovers Noether’s theorem in the case a =5 = 0. Fur-
thermore, if the Hamiltonian H takes the usual form

H(q,p)=T(p)+ V(q)
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with T(p) the kinetic energy and V(gq) the potential energy, then

0V(q)

[V(q), Z p q"]= Z q' 0

which is known in the literature.as the virial of the system.
For Hamiltonians H which have a Legendre transform L with respect to the
conjugate momenta p ji.e. if

3%H
det{ ——— |# 0
ap* op’
we have the Lagrangian:
n . .
Lq,9)=) p'¢'—H@,p)
i=1

and 2T =L + H.
Take w?and X as in (5) and (6), then

1 -
(10) X,H= ;[H,Zp'q'}r 2T
i

therefore (8) and (9) become

(11) [H¢ ‘ Y q'pt|+2T i
b+ — i =
2 ,.qp] an

A=0

f

a
(12) H ¢+ — ipi|+2T=bH.
o 5 o]

If one has additional information about the system one can derive more con-
clusions. Here we limit ourselves to a result which is frequently encountered in
the literature, namely the form of the virial theorem for bounded motions.

VIRIAL THEOREM. Under the conditions of above, suppose E € R such that the
set H-W(E) is compact, then for each set of initial conditions (qopo) € R?" for
which H(q,, py) = E one has

d(g* (N H)
(13) 2Ty, =< —————

90Po da N

Il

0 4oPy
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and if gx(N\)H = (exp bN\)H, then

(14) 2a (T>flol’o= bE

1
where (f), , = lim = fOTdr f,(ay py) for f€ A(T) and f(qy py) the solution
of (7).

Proof. The theorem follows from (11) and (12) and the boundedness of ¢ +

a o
+ 5 2 p' q' on a compact set. n
1

In the familiar applications of the virial theorem one mainly restricts oneself to
the one-parameter groups of scale transformations (see e.g. {2]). In this case the
tunction ¢ is a multiple of Z p’ q’. Wellknown examples are potentials which

1

are homogeneous in the coordinates qk(k =1,...,n)e.g. the harmonic oscillator,
the Kepler motion, a charged particle in an electromagnetic field with homo-
geneous vector potential, etc. We will not enter into the discussion of those
wellknown examples.

Here we want to stress that the applicability of our theorem is not restricted
to the scale transformations but opens a wide horizon of possibilities. As a simple
but non-trivial illustration we discuss the Toda-lattice system where we combine
a scale transformation of the p-coordinates with translations for the g-coordina-
tes.

The Hamiltonian of the system in given by [10]

" N2 oy —bigtti-gi-5) i+1 i
H(q,p) = E P+ > ;e T+ dg" —qh) |+
i=—n i=-n

(15)
+P(@"—q™™

where 6,b,d, PE R and bd > 0.

One looks upon this system as a chain of 2n 4+ 1 particles with anharmonic
interaction with an equilibrium distance between the particles given by &. By
a simple transformation one eliminates &; the coordinates qi represent then
the deviation from their equilibrium. As boundary condition a constant force
of strength P is applied at the endpoints. The constant P has the meaning of a
pressure.

Consider the one-parameter group of transformations G = {g(}\) |AER }where

g =gk —kn  gpF=e?Vipk
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=—n,—n+1,...,n Forall A€ IR, g(A\) is a canonical transformation with
valence c()\) = exp %Z\- , and therefore a = b/2 in formula (2). We compute
the function ¢ defined in formula (4) for X, asin (5):
. k b Kk k
¢(q.p) = —k;n (kp +atp )
One checks that the Hamiltonian (15) transforms under G as follows:
g*(VH(q, p) =" H(q,p) —(d + P)2n X + e"Ng" —q™™).

Hence

d
(16) — (" (VH@. PN |, =, bH =@+ PX2n +5(@"—q™").

Denote by
(¢ S YCLAR L) i+l i
Vig) = E ;e +d@  —q )

i=-n

the potential function and apply the virial theorem. One gets using (16):

1% d+P
a7 7= — 0% _
d db
4" — 47"y p,

where r = ——————¢=¢ {5 the mean distance between two neighbouring par-
_272_
ticles, and where

7, = Lo
qoPg 2n

is the mean potential energy per particle. Remark that formula (17) is the expres-
sion for the time averages holding for all initial conditions (qo po) and coinciding
with the one calculated for thermal averages in [10].
One can also put the result (17) in the following form:
- E9 —<(T) Py _1_
d+P b

where T is the kinetic energy and where E0=H(qo, po)/2n. Using the ergodic
theorem and the equipartition theorem



324 B. NACHTERGAELE, A. VERBEURE

_ kT
Paors™ 3
one gets
Es—sz2 1
(18) 7= ———— — —

d+P b
Take now the harmonic lattice with
H=) )+ 51; f (@1 —q) +P(@"—q ™M+ < 2n
i i=-n b
and the dilation group
gM)p =eV2p
gNg=e"lq.

Then
d
"N H=e*H—(e*—e MYP(g"—q ™ —(e*—1) —b— 2n

and applying formula (13) one getsasa=5b = 1

) <T)‘lo”o - (HZIOPQ — l Pr— E )
2n 2n 2 b

Again using the equipartition theorem:

! d
Ej=kT+ —Pr+ —.
2 b

For small anharmonicity (d>> 1, b << 1, db = constant) this expression of
the energy can serve as a first approximation in formula (18) and one gets:

kT 2P
F= -

2d+P bQR4+P
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