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Groups of canonical transformations
and the virial-Noether theorem
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Abstract. In Hamiltonian mechanicsa characterizationof theinfinitesimalgenera-
tor of one-parameterLie Groups of non-univalentcanonical transformations is
given. The result is usedto derive a generalform of thevirial theorem,which has
Noether’s theoremas a special case. The theory is applied to the Toda lattice
system.

I. INTRODUCTION

A basicstrategyin dealingwith classicalmechanicsis looking for integralsof

the motion. This theorystartedwith the notion of cyclic coordinatesandculmi-
nated in Noether’s fundamentaltheorem [I], which associatesto each one-

-parametergroup of symmetry transformationsof the Hamiltonian an integral
of the motion.

Another result in classicalmechanicsrelevant for physical applicationsis the
virial theorem.In textbooksthis theoremappearsasaresultindependentfrom

the theory of constantsof the motion.Howeverin [21van Kampengavea deriva-
tion of the virial theorembasedon the idea that it is a consequenceof the form
invarianceof the equationsof motion under a continuoustransformation.It is
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well-knownthat form invariance of the equations of motion does not imply

necessarilya symmetrytransformationof the system.

In this paperwe work out this idea for Hamiltonian mechanicson symplectic

manifolds. In section II we study one-parameterLie groupsof transformations
leaving the symplectic structure form invariant, but not strictly invariant, i.e.
the canonicaltwo-form is transformedinto a multiple of itself. It can be shown

that this property is equivalent to form invarianceof the equationsof motion
[3]. In particular we give a completecharacterizationof the infinitesimal gene-
rator of suchone-parametergroupsand provethat it is given by a linearcombina-

tion of a Hamiltonian vectorfield and the infinitesimal generatorof the dilations.
The usualproofof the virial theoremis basedon the studyof the time evolution
of the infinitesimal generatorof the dilations. Therefore our one-parameter

groupsof canonicaltransformationsare genuinelyconnectedto thevirial theorem.
In sectionIII we useour results to derivea very generalform of thevirial theorem.

whichhasNoether’stheoremas a specialcase.
Finally, we conclude by a detailedapplication of the virial theoremto the

Toda lattice system.Contrary to the familiar applicationsof this theoremwhere
only scaletransformationsareused,in this model we go beyondthemandemploy

a combinedscale-translationtransformationgroup,illustrating the powerof the

method.

II. ONE-PARAMETER GROUPS OF NON-UNIVALENT CANONICAL
TRANSFORMATIONS

Let F be theclassicalphasespacewhich as usual is an evendimensionalanalytic

manifold. We considerF to be equippedwith a symplecticstructuregiven by a
closed nondegenerateanalytic 2-form w2, i.e. w2 satisfies: do.~2= 0 and for

any ~E TF~,the tangentspaceat the point x of F : w2(~,n) = 0 for all 77 E TF~

implies ~= 0. Therefore the phase space F is a symplectic analyticmanifold.
Furthermore,we supposethat thereexistsan analytic I -form w1 such that

= dw1, or a vectorfield X
1 for which d i,~w

2 = ~2. ix, w2 is the inner pro-

duct of X
1 andw

2
As an exampletake F = lR2 with thechart(q, p), then a naturalsymplectic

structureis given by the 2-form w2 = dq A dp and the corresponding1 -form

by w~= —p dq, orX
1 = —pa/ap.

Next we introducethe notionof canonicaltransformation.

Considerg an analytic one-to-onemapping of the phasespaceF into itself.
Thismappingdefinesa linearmap of the tangentspaceswhich, in turn, introduces

the mapg* of the analytick-forms.
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DEFINITION 11.1. A mapping g, as describedabove,such that there existsa non
zero constantc E IR, satisfying

(1) g*w
2=cw2

is calleda canonical transformationof valencec. U

Denoteby K the set of canonicaltransformations.It is clear that K is a group
for the composition law of successiveapplication of the transformations.
Remarkthat the set K

1 of canonical transformationsfor which c = 1 in (1)

is a non trivial subgroupof K; l(~is calledthe groupof univalentcanonicaltrans-
formations,leaving the 2-form w

2 invariant. Most authors[4 - 7] restrictthem-
selvesto thissetof univalentcanonicaltransformations.

For what follows it is important to notice that we studythe extendedgroup

K of canonicaltransformations[8]. As is clear from the definition they do not
leave, in the strict senseof the word, the 2-form w2 invariant, but it can be

shown that the elementsof K do preservethe structureof the Hamiltoncanonical
equationsof motion [3].

Next we introduce a 1-parameterLie group G, a subgroupof the group K

of canonicaltransformations.Denoteby X C JR the canonicalchart of the Lie

groupG, i.e. for eachX
1, X2 C IR thereexistsg(X1),g(X2)C G suchthat

g(X1)g(X2) = g(X1 + X2)

Denoteby c(A) the valence of the canonicaltransformationg(X) elementof G,

then the function c : XE JR -+ c(X) C JR is analytic and from (1) it follows that

c(A1) c(X2) = c(X1 + X2).

Hence,thereexistsa constanta C JRsuchthat

(2) c(X)=expaX.

Thecasea = 0 reducesto G C K1.

Denote by A (F) the set of analytic functions on the phasespace I’, then
the Lie algebraof G is generatedby thevectorfieldX definedby

df(g(X)x)
(3) (Xf)(x) =

dA

The componentsof X are thenX~= Xx’.

THEOREM 11.2. Let G = {g(X)}~~~be a 1-parameter Lie group of canonical

transformationsof the symplecticanalytic manifold F, equippedwith the 2-
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-form w2 Let X
1 be a vectorfieldsuch that w

2= d ~x w2 then there exists

locally a function~ E A (F) such thatwith X the vectorfield ofG onehas:

(4) d~ixw2_aixw2

wherethe constanta is definedin (2).

Proof Using definition 11.1, formula(2) andw2 = d ix, w2

d(g*(X)w2) d(g*(X)i~w2)
aw2= =d

dX dX

ApplyingThm 2.4.13of[5] fori~w2:

dg*(X)i
1 w

2
1 ixdixw2+dixixw2

dX 1 1

hence

d(ai
1 w

2_ixw2)0

yielding the result. U

By meansof this theoremthe generatorX of the Lie group G is expressedin

terms of the function 0. Due to the non-degeneracyof w2 formula (4) defines
X uniquely. The vectorfield X dependsonly on w2. Formula(4) can be viewed

as the defining relation of çb. The latter one depends on the vector fields X and
X

1
Now we are interestedin the inversequestion,namely whethereachvector-

field X defined by equation(4) generatesa 1 -parameterLie groupof canonical
transformations. The answer is in the following theorem,which we formulate

in the case ~ is globally given. If ~ is only locally given one gets only a local
group.

THEOREM 11.3. Suppose0 C A (F) be given, where F is again the symplectic

manifold with the 2-form w
2 and the vectorfield X

1 such that d i~, 2 =

then the vectorfieldX defined by equation (4), generatesa 1 -parameterLie
group G = { g(X)}~~~ of canonical transformationswith the group of valences

{c(X) = expaX}xE~.

Proof Definethemapg(X)ofFby:

g(X):xCF-+g(X)xEF
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such that for fixed x C F , A —* g(X)x is the unique solution with initial values
x = g(0)x, of the first orderdifferentialequations

=X(g(X)x)’; (i= I 2n).

It is wellknown (see e.g. [9, Theorems6.2.1 and 3.5.2]) that G =

is a 1-parameterLie group and A is a canonicalchart:g(A1)g(X2)=g(X1 + A2);
X~,X~C JR. Next we check that for each A C IR, g(X) is a canonicaltransfor-
mation.UsingThm 2.4.13of [5] and the fact that w 2 is closed

g*(X)w
2 =g*(A)(i~dw2+ d(ixw2)) = g*(x) d(ix(~2).

Using formula(4):

o = d20 = d(i~~2)—aw2.

Hence

d
— g*(X)w2=ag(X)w2~
dA

andtherefore,asg*(0)is theidentity map:

g*(X)w2 = e0Xw2

proving(1).This concludestheproofof theTheorem. U

It is instructive to specializeto the casethat F has a local chart (q’
q”,p1,. . . ,p”) and locally

(5) w2=~dq1Adpl

onecanchoosefor X
1 the following vectorfield:

(6) xi=i~(q’~-j.-_pt_-)

thenonehasthesolution of (4)

X=[.,0]+aX1

wherethe bracket
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af a~ af a~
~ 3q’ ap’ ap’ aq’

mappingA (F) x A (F) in A (F). is the usualPoissonbracket.
In the caseof univalent canonicaltransformations(a = 0) this formulareduces

to the wellknown statementthat the generator of 1 -parametergroupsof canoni-

cal transformationsis given by the Poisson bracket with a function, in other
words the generatorsare Hamiltonianvector fields. Here we see that for general

1-parametergroups of canonicaltransformationsthe generatoris given by the
sum of a Hamiltonian vectorfield and a vectorfield X1, which is a generatorof
dilations.

III. THE VIRIAL-NOETHER THEOREM AND APPLICATIONS

Let us first introduce a Hamiltonian systemwith HamiltonanH:(q, p) CF —*

H(q, p) C JRsuchthatH C 4(F).
The canonicalequationsof motion are then

(7) f=[f,H], fCA(F)

with solution f~(q0.p0); q0 = q(t0), p0 = p(t0) initial values. The preceeding
characterizationof the generatorsof 1 -parameterLie groupsof canonicaltrans-

formations is now used to derive a generalizationof Noether’s theorem.Here
we consider1 -parametergroups of transformationswhich do not leave neces-

sarily the Hamiltonian invariant, as they do in Noether’s theorem,but which
transform it in a trivial way in the sensethat they multiply it by a constant.
The result we get is the virial theorem,yielding as a specialcaseNoether’stheo-

rem.
Let G = {g(X)}~~~be a one-parameterLie group of canonicaltransforma-

tions of the symplecticmanifold F, equippedwith w
2 and X

1 as above.Then
thereexistsa function0 C A (F) suchthat

d(g* (X)I1)
(8) [H,0J+aX1H=

dA

In particular,if g~(X)H=(expbX)H, with bE JR then

(9) [H,çb]+aX1H=bH.

Remark that one recovers Noether’s theorem in the case a = b = 0. Fur-

thermore,if theHamiltonianH takesthe usual form

H(q,p)= T(p)+ V(q)
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with T(p) the kinetic energyand V(q) thepotentialenergy,then

.1 . .

[V(~)~E~’~~‘j=~ aq’

which is known in ~he literature asthe virial of the system.
For HamiltoniansH which havea LegendretransformL with respectto the

conjugatemomentap i.e. if

a~
det . .

ap’ ap’

we havethe Lagrangian:

L(q,t~)=~p1~’—H(q,p)

and2T=L +H.
Takew2andX

1asin (5) and(6), then

(10) X1H=

therefore(8) and(9) become

[ a - .1 d(g*(A)JI)
(11)

L j

(12) [H~o+-~- ~~ipi]+2TbH

If one hasadditional information about the systemone canderive morecon-

clusions. Here we limit ourselvesto a result which is frequentlyencounteredin
the literature, namely the form of the virial theorem for boundedmotions.

VIRIAL THEOREM. Under the conditionsof above,supposeE C JR such that the
set H

1(E) is compact, then for eachset of initial conditions(q
0p0)C JR

2~for

whichH(q
0,p0)= E onehas

d(g*(X)I1)
(13) 2a(T) =< >

q0p0 dA X=0 q0p0
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and if g*(X)H = (exp b X)H, then

(14) 2a(T) =bE
q

0p0

where (f)~ ~ = urn ~ d t ~ (q0, p0) for f C A (F) and ~ (q0,p0) the solution

of (7).

Proof The theorem follows from (11) and (12) and the boundednessof 0 +

+ -~- ~ p’ q’ on a compactset.

In the familiar applicationsof thevirial theoremonemainly restrictsoneselfto
the one-parametergroups of scaletransformations(see e.g. [2]). In this casethe

function 0 is a multiple of ~ p’ q’. Wellknown examplesare potentialswhich

arehomogeneousin the coordinatesq”(k = I n) e.g. the harmonicoscillator,
the Kepler motion, a chargedparticle in an electromagneticfield with homo-
geneousvector potential, etc. We will not enter into the discussionof those

wellknown examples.
Here we want to stressthat the applicability of our theoremis not restricted

to the scaletransformationsbut opensa wide horizonof possibilities.As a simple

but non-trivial illustration we discussthe Toda-latticesystemwherewe combine
a scaletransformationof the p-coordinateswith translationsfor the q-coordina-

tes.

TheHamiltonianof the systemin given by [10]

H(q, p) = E (p
1)2 + + d(q’~1 — q’)

(15)
+P(q’~_q_fl)

where ~, b, d,PE JRandbd>0.
One looks upon this systemas a chain of 2n + 1 particleswith anharmonic

interaction with an equilibrium distancebetweenthe particles given by b. By
a simple transformation one eliminates ~ the coordinatesq’ representthen
the deviation from their equilibrium. As boundarycondition a constantforce
of strengthP is applied at the endpoints.The constantP hasthe meaningof a

pressure.
Considerthe one-parametergroupof transformationsG = { g(X) A C JR} where

g(X)qk = qk — kX; g(X)p~’= e~2p~~
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k = — n, — n + 1 n. For all AC IR, g(A) is a canonicaltransformationwith

bA
valence c(X) = exp —i-- , and therefore a = b/2 in formula (2). We compute

the function 0 defined in formula(4) for X1 asin (5):

n b
~ ~ = — k~n (k ~k + qk pk).

Onechecksthat theHamiltonian(15) transformsunderG as follows:

g*(X)H(q,p)=ebXH(q,p)_(d +P)(2n A + e(q~—q~)).

Hence

d
(16) — (g*(A)H(q,p))~ = bH—(d+P)(2n +b(q”—q~)).

dA

Denoteby

‘i-’ d

V(q) = ~ ( ~-b(q~ ~q’) + d(q’~’_qi))

the potential functionand applythevirial theorem.Onegetsusing(16):

(V> d+P
(17) ~ — _____

d db

where ~= ~ q>~0~0is the meandistancebetweentwo neighbouringpar-
2n

tides,andwhere

(V)
=

q0p0 2n

is the meanpotentialenergyperparticle.Remarkthat formula (17) is the expres-
sion for the time averagesholding for all initial conditions(q0 p0) andcoinciding
with the onecalculatedfor thermal averagesin [10].

Onecanalso put the result (17) in the following form:

~= E0_(T)~qp 1

d+P b

where T is the kinetic energy and where E0 = H(q0, p0)12n.Using the ergodic
theoremand the equipartitiontheorem
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kT
(T)

q
0p0 2

onegets

E0—kT/2 1
(18) 7= ——

d+P b

Takenow the harmoniclattice with

db n-i d
H= ~(p.)2+ ~(qi+l_..qi)

2+P(qn_q_n)+ —2r~

and the dilation group

g(X)p = e~2p

g(A)q = e~2q.

Then

d
g*(X)H= eXH_(e~_e “2)P(q’~-.--q”) —(e~’—I) — 2n

b

andapplying formula(13)onegetsasa = b =

(T) (H) 1 d
2 =

2n 2n 2 b

Again usingthe equipartitiontheorem:

d
E

0=kT+ —P7+—.
2 b

For small anharmonicity (d>> 1, b << 1, db = constant) this expression of

the energycanserveas a first approximationin formula(18) andonegets:

kT 2P

2d+P b(2d+P)
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